

Thermally aware high-power inverter board for battery-powered applications

Enrico POLI

We are creators and makers of technology

ST addresses the industrial market with application driven, high added-value ASSPs & ASICs

Motor control leadership areas

	STDRIVE	STDRIVE Gate Drivers	From single to 3-phase	Best-in-class motor driving, high efficiency and robustness
	STGAP	STGAP Galvanic Driver	Safety & High voltage	6 kV galvanic isolated drivers optimized for SiC, GaN & IGBT
	STSPIN	STSPIN Motor Drivers	Digital motion	High system integration, Flexibility, performance
The N.L.	HIM	DE		3

Introduction

High power Three-Phase Motor Driving Board

- STDRIVE101 gate driver and STL110N10F7 MOSFETs
- 15 A_{rms} output current (20 A_{rms} with heatsink) at 75V
- Three or single shunt current sensing topology
- Sensor and sensor less algorithms
- Bus voltage and temperature monitoring
- Overcurrent / short circuit protection
- Free software libraries for Field-Oriented Control and 6STEP

Layout improvements

Top layer

life.augmented

- Better heat spreading
- Max dissipation area
- Dual side cooling
- Reduced current density
- Small loops placement
- Fast switching

Estimate of power losses

Celsius simulation

Hotspots not of concern

life.auamented

Celsius simulation

Thermal analysis @ 15 Arms Settings Transient temperatures [°C] 28 °C ambient temperature 2-R model for MOSFETs • Fixed heat transfer coefficients Step functions for sources . ٠ 80 Steady state temperatures Top layer 93.6 °C 70 60 10 - 10 10 50 0 40 R24 30 11 200 400 600 800 1000 1200 1400 [s] Hottest U half bridge MOSFETs at 95 °C and shunts at 86 °C • 13 minutes warm up • 5 °C delta - top vs bottom • Very good design margin 58.1 °C life.augmented

Bench validation

Bench validation

Power losses measurement

Bench validation

Thermal characterization

Correlate simulations

Half-bridge U components warm up

Simulated transient temperatures

	Component	Simulation [°C]	Measure [°C]
	HS MOSFET Q1	95.1	93.8
	LS MOSEFT Q4	94.9	91.7
life.auamented	Shunt resistor R23	86.3	82.6

- \checkmark
- Confirmed hottest half bridge
- Same transient
- Very good temperatures matching

12

Conclusions

EVALSTDRIVE101 optimized by Celsius™

High power & low voltage BLDC motors Battery-powered applications

Fine tuned layout

- Detailed voltage drops and current density
- Foreseen temperature profile and hotspots
- Certified performance by thermal imaging

Find more on: TA0361 Thermally-aware high-power inverter board for battery-powered applications

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

Designing for High Current / High Power PCB Applications

Dirk Linnenbrügger / Jerry Long Webinar

Products / Solutions for Electronic Designers

Solutions

- PCB Layout
- PSpice-Simulation
- SI- and PI-Simulation
- EMI and Antenna Simulation
- Timing Analysis
- Thermal Simulation
- 3D mCAD-eCAD Integration
- CAM Verification
- Boundary Scan Test
- Protocol Analysis
- Electronic Data Management
- PLM and ERP-Connection

Focus on Customer Satisfaction

Sales

- Fair, competent advice
- Long term solutions

Support

- Hotline, Fastviewer
- Survey

Service

 PCB Design Services (Layout, Simulation, Migration)

Training

- Trainings center, on-site
- Workshops

Electrical and Thermal Co-Simulation & Analysis

- Electrical DC Analysis
 - Tracks down the voltage distribution along the power delivery path
 - Finds out if there's any critical location of large amount of current
- Thermal Analysis
 - Consider Joule heating on PCB and package
 - Locates current and temperature hot spots to avoid risk of failure
- E/T Co-Simulation
 - Ensures the thermal stability of your design
 - Increases your PCB reliability
 - Enables you to make necessary design decisions in time

18

Transient E/T Co-Simulation Workflow

Initial Setup	 Check layer stackup Set up plating thickness Choose / edit PCB material 	Stack UpPad StackLayer #ColorLayer IconLayer NameThickness(mrMaterial1Image: SignalSTOP0.07copper1Image: SignalSTOP0.07copper2Image: SignalS2INN0.07copper1Image: SignalS2INN0.07copper1Image: SignalS3INN0.07copper1Image: SignalS3INN0.07copper1Image: SignalSBOTTOM0.07copper
E-Setup	 Set up VRMs (sources) Set up sinks Set up discrete components 	
T-Setup	 Set up ambient conditions Select & set up thermal components Define external heat sink (opt.) 	
Simulation & Results	 E/T result tables E/T 2D/3D distributions Generate report 	

19

Setup of VRMs, Sinks and Discrete Components

- Power rail configuration capabilities
 - Wizard based setup
 - Used for simple power rail structures
 - PowerTree
 - Used for complex power supply structures
 - Configuration of:
 - Sources (starting point)
 - Discrete components
 - Sinks (ending point)
 - Supports DC-DC LDO configuration
 - Current source configuration
 - Used for 3 phase MOSFET gate drivers

STMicroelectronics STDRIVE Demonstration Board for Three-Phase Brushless Motors

STDRIVE101 Triple Half-Bridge Gate Driver

FlowCAD

Board Layout

Simplified PCB Current Loop Model

- Average current loops modeled by a supply rail and a ground path loop
 - Each half bridge simplified modeled by a constant current source placed between output power connector and supply power connector
 - Power MOSFETs modeled by short circuits
 - Shunt resistors modeled by short circuits
 - Good fitting with real case average currents

Development Stages

- Initial Layout
 - Not fully placed
 - Rough thermal analysis of top layer only

- Interims2 Layout
 - Analyzing and optimizing current paths
 - Modify layout to improve heat transmission from top to bottom board surface

- Final Layout
 - Optimized layout without bottlenecks
 - Increased copper thickness
 - Well balanced output voltages

FlowCAD

Final Layout – Layout Plots

Junction Temperature & IR-Drop vs. Copper Thickness

	Initial	Intermediate2	Final Layout
Layer 01	1 oz copper	1 oz copper	2 oz copper
Layer 02	1/2 oz copper	1∕₂ oz copper	2 oz copper
Layer 03	1/2 oz copper	1/2 oz copper	2 oz copper
Layer 04	1 oz copper	1 oz copper	2 oz copper

Voltage IR-Drop [mV]

27

Celsius Thermal Solver – Initial Setup

- Load layout file
- Check layer stackup
- Check padstack

Simulation

& Results

Check PCB material configuration

Stack Up Pad Stack										
Layer #	Color	Layer Icon	Layer Name	Thickness(mn	Material	Conductivity(S/m	Fill-in Dielectric			
1			Signal\$TOP	0.07	copper		FR4			
			Medium\$41	0.25	FR4	0				
2			Signal\$2INN	0.07	copper		FR4			
			Medium\$43	0.8	FR4	0				
3			Signal\$3INN	0.07	copper		FR4			
			Medium\$45	0.25	FR4	0				
4			Signal\$BOTTOM	0.07	copper		FR4			

Layer stackup editor

Material database

Initial Setup

E-Setup

T-Setup

Padstack stackup editor

Celsius Thermal Solver – E-Setup

- Set up VRMs
- Set up Sinks
- Set up Discrete components
- Set up V/I Probes

Volta	Voltage Drop Analysis Setup -> Set up VRMs -> Set up VRMs									
Set ι	up VRMs	Set up Multi-Ph	ase VRMs							
	VRM	Name	Nomina	l Voltage (V)	Output Tolerance	e (%)	Sense Voltage (V)		VRM_C	
	VRM_C	ON1_VM_GND	36		Not In Use		36			
₽ 1	*									

Voltage Regulator Modules VRMs

Voltag	Voltage Drop Analysis Setup -> Set up Sinks										
Tolerance Unit 🥱 🔽 Instance Based Current Mapping Files for Sinks											
	Sink Name	Model	Nominal Voltage (V	Power/Ground Net	Upper Tolerance(+%)	Lower Tolerance(-%)	P/F Mode	Current (A)			
	SINKO	Equal Current		OUT_W_VM	Not In Use	2 E	Worst	10.6			
	SINK1	Equal Current		OUT_W_GND	Not in Use	2	Worst	10.6			
	SINK2	Equal Current		OUT_V_VM	Not in Use	2	Worst	10.6			
	SINK3	Equal Current		OUT_V_GND	Not In Use	2	Worst	10.6			
₽	SINK4	Equal Current		OUT_U_VM	Not in Use	2	Worst	10.6			
	SINK5	Equal Current		OUT_U_GND	Not in Use	2	Worst	10.6			
Z *											

Sinks

Volta	ge Drop Analysis Setup -> Set uj	p Discretes				
	Discrete Name	Resistance (Ohm)	Max Current (A)			
	DISC_Q1_OUT_U_VM	1e-6	0			
2	DISC_Q2_OUT_V_VM	1e-6	0			
₽	DISC_Q3_OUT_W_VM	1e-6	0			
	DISC_Q4_OUT_U_SNSU_P	1e-6	0			
•	DISC_Q5_OUT_V_SNSV_P	1e-6	0			
	DISC_Q6_OUT_W_SNSW_P	1e-6	0	Volt	Voltage Drop Analysis Set	Voltage Drop Analysis Setup -> Set up V/I Prot
	DISC_R23_GND_SNSU_P	1e-6	0		Probe Name	Probe Name Model
	DISC_R24_GND_SNSU_P	1e-6	0		VProbe_OUT_U	VProbe_OUT_U Voltage
2	DISC_R25_GND_SNSV_P	1e-6	0	5	VProbe OUT V	VProbe OUT V Voltage
2	DISC_R26_GND_SNSV_P	1e-6	0		VProbe OUT W	
	DISC_R27_GND_SNSW_P	1e-6	0	-		
	DISC_R28_GND_SNSW_P	1e-6	0			✓ ¹ / ₁

Discrete components

Voltage probes

FlowCAD Confidential

Initial E-Setup T-Setup Simulation & Results

Celsius Thermal Solver – T-Setup (I)

Simulation

 \geq

Initial

Setup

E-Setup

- Set up ambient temperature & ambient conditions (i.e. heat transfer coefficient HTC)
- Select thermal components

Ambient conditions

Component Manager									
Model Name	Thermal Compon	Tags	Ckt Type	Catalog	Outline				
STDRIVE101_QFN050P-400X400X100STDRV101		IC			driver				
^t U1			PCB-comp						
STLD130N8F7_POWERFLAT127P-600X5_STL110N10F7		IC			mosfet				
Q1	\checkmark		PCB-comp						
Q2	V		PCB-comp						
Q 3			PCB-comp						
Q4	\checkmark		PCB-comp						
Q5			PCB-comp						
1 Q6			PCB-comp						

Thermal component selection

FlowCAD Confidential

Celsius Thermal Solver – T-Setup (II)

• Set up thermal components

Simulation

& Results

 \geq

Initial Setup

E-Setup

Choose Property Type:

Theta-JB: 1.1

Theta-JC: 31.3

Component Manager									
RefDe	Model Name	Tags	X(mm)	Y(mm)	Rotation	Flip	Property	MaxDieTemperat	Dissipation
Q1	STLD130N8F7_P	IC	71mm	76mm	270.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
Q2	STLD130N8F7_P	IC	71mm	50.75mm	270.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
Q3	STLD130N8F7_P	IC	71mm	25.5mm	270.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
Q4	STLD130N8F7_P	IC	71.25mm	85.5mm	0.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
Q5	STLD130N8F7_P	IC	71.25mm	60.25mm	0.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
Q6	STLD130N8F7_P	IC	71.25mm	35mm	0.000000	No	2-Resistor Comp	95.000000	Transient Function : pwl_q
R23	R-2512_RESC-25	IC	56.75mm	91.5mm	0.000000	No	Material		0.281W
R24	R-2512_RESC-25	IC	56.75mm	87.5mm	0.000000	No	Material		0.281W
R25	R-2512_RESC-25	IC	56.75mm	62.25mm	0.000000	No	Material		0.281W
R26	R-2512_RESC-25	IC	56.75mm	66.25mm	0.000000	No	Material		0.281W
R27	R-2512_RESC-25	IC	56.75mm	41mm	0.000000	No	Material		0.281W
R28	R-2512_RESC-25	IC	56.75mm	37mm	0.000000	No	Material		0.281W

Set up PCB components table

Thermal component material selection

Transient thermal dissipation function definition

Celsius Thermal Solver – Constraints-Setup

- Set up E-Constraints
 - max. IR-drop

Ž

. .

- max via current
- max. current density
- Set up T-Constraints
 max. plane temperature

Electrical Constraints Setup -> Via Current/Current Density									
Constraint Mode Sink Voltag		Discrete Current	Probe Voltage/Current		Via Current/Current Dens				
Constraint on Global Via Current (A): 0.853311									
Constraint on Global Via Current Density (A/mm2): 7.59327									
	PadStack Name Maximum Cu								
	VIA12_32RD)	0.7						
	VIA20_40RD)	0.7						
	VIA20_40RD	_Geo_Mir	0.7						

Max. via current

The	Thermal Constraints Setup -> Plane Temperature										
Via Temperature Trace Temp			Trace Temp	oerature	Plane Temperature	Wire	Wirebond Temperature				
Co	nst	traint on Gl	obal Plane T	emperatu	ıre (C):		95				
		Layer Name	:	Maximum Temperature (C)							
₽		Signal\$TOF	p	85							
₽		Signal\$2INN		75							
₽		Signal\$3IN	N	75							
₽		Signal\$BO	ттом	85							

Max. plane temperature

Celsius Thermal Solver – E-Simulation & Results

- View electrical result tables and current / voltage distributions
- Simulation time

& Results

 \geq

Setup

- single static analysis: 30 sec.
- complete transient: 16 min.

Results and Report -> Probes Measurements							
VRM Voltage	Sink Vol	oltage Discret		e Current	Other Compon	ent Voltage	Power Loss
Probe Name	Probe Name		del Nominal		Voltage (V) Actual Vol		age (V)
VProbe_OUT_U		Voltage		0		-0.0437187	
VProbe_OUT_V		Voltage		0		-0.0399944	
VProbe_OUT_W		Voltage		0		-0.0346542	

Voltage probes results table

2D current density distribution, top layer

		_	
000		R23	
00		R73 Q4	
COE			
GOE	CORCORCOR.	G12 Q1	
OC IET		036	
5 E E		R25	W
38	• B B	R74 Q5	
	0 0 /	E D2	
	S	C36	
00		- JP6 -	+
0.0		R28	
😤 📍 🔟 🚱	0	R75 D6 H	
		C77	
		X	
		18 M. 18	

2D IR-drop distribution, all layers

Celsius Thermal Solver – T-Simulation & Results

• View thermal steady state result tables and distributions

 \geq

Setup

component/Package Temperature Results							
Reference Designator	Dissipation + Power	CaseTopDissipation (CaseSideDissipation (W)	PCBDissipation (W)	▼Junction (C)	Case (C)	Board (C)
Q1	0.000000	0.031912	0.000000	-0.031912	93.993170	95.032756	93.559968
Q4	0.000000	0.031854	0.000000	-0.031854	93.852117	94.893804	92.977703
Q5	0.000000	0.031785	0.000000	-0.031785	93.696712	94.740678	92.674344
Q2	0.000000	0.031514	0.000000	-0.031514	93.148640	94.200630	92.786806
Q6	0.000000	0.030957	0.000000	-0.030957	91.925308	92.995296	90.775731
Q3	0.000000	0.030023	0.000000	-0.030023	89.994895	91.093206	89.868027
R23	0.281000	0.018892	0.028677	0.233430	86.305400	86.302164	86.305400
R24	0.281000	0.018774	0.028495	0.233730	86.082671	86.039628	86.082671
R26	0.281000	0.018493	0.028071	0.234437	85.207621	85.189506	85.207621
R25	0.281000	0.018466	0.028028	0.234506	85.139213	85.106525	85.139213
Output Folder Brow	ser TCL Command	Component/Package Ten	perature Results				

Component temperature results table

& Results

2D steady state temperature distribution

34

Celsius Thermal Solver – Transient T-Simulation & Results

• View thermal transient result curves and transient thermal distribution

Setup

& Results

2D transient thermal distribution

35

Exploring Different What-if Configurations (I)

Choose high thermal glass composite PCB laminate

	Junction Conductivity 1.5 W/m · K	Junction Conductivity 1.1 W/m · K	Junction Conductivity 0.4 W/m · K					
Junction Temperature (°C)								
Q1	91.5	91.8	92.6					
Q2	90.5	90.8	91.5					
Q3	87.8	88.1	88.7					
Q4	91.5	91.8	92.5					
Q5	91.0	91.3	92.1					
Q6	89.4	89.7	90.4					

Item	Unit	ECOOL R-1586(H)	ECOOL R-1787	Conventional FR-4, R-1705
UL / ANSI grade	-	CEM-3	CEM-3	FR-4.0
Glass transition temp. (Tg)	°C	148	148	140
Thermal conductivity @ 85°C	W/m · K	1.5	1.1	0.4
Thermal resistance	°C / W	5.0	6.7	17.5

Source: Panasonic

Exploring Different What-if Configurations (II)

Define individual heat sinks to components

3D thermal distribution with heat sinks

Exploring Different What-if Configurations (III)

3D thermal distribution without heatsinks

3D thermal distribution with heat sink plate

Summary & Key Takeaways

- With the Celsius Thermal Solver, you can easily simulate the thermal behavior of your design
 - Complete solution with detailed modeling of the PCB
 - Find temperature hot spots in your design
 - Eliminate high voltage drops and current bottlenecks
- E/T co-simulation helps to make any necessary changes during design development
- Simulation "only" costs time; no costs for prototypes
- Experiment! Nothing breaks! ③
- Deliver a first-time-right solution for the given challenge

Contact us / Kontakt zu FlowCAD

Please do not hesitate to contact us. Für weitere Fragen und Informationen stehen wir gerne zur Verfügung.

FlowCAD Deutschland

Mozartstr. 2 85622 Feldkirchen bei München T +49 89 45637-770 info@FlowCAD.de

FlowCAD Schweiz

Hintermättlistr. 1 5506 Mägenwil T +41 56 485 91 91 info@FlowCAD.ch

FlowCAD Polska

ul. Sąsiedzka 2A 80-298 Gdańsk T +48 58 727 90 90 info@FlowCAD.pl

Follow Us

FlowCAD PCB Design Lösungen

» FlowCAD.com

» <u>FlowCAD.com/</u> <u>newsletter</u>

» <u>youtube.com/</u> FlowCAD

» <u>linkedin.com/</u> <u>FlowCAD</u>

» twitter.com/ FlowCAD

» instagram.com/ FlowCAD

» <u>facebook.com/</u> <u>FlowCAD</u>

» <u>xing.com/</u> <u>FlowCAD</u>

Don't forget to subscribe, share and like!

EVIA Design Automation[®]

